257 research outputs found

    Average Emissivity Curve of BATSE Gamma-Ray Bursts with Different Intensities

    Get PDF
    Six intensity groups with ~150 BATSE gamma-ray bursts each are compared using average emissivity curves. Time-stretch factors for each of the dimmer groups are estimated with respect to the brightest group, which serves as the reference, taking into account the systematics of counts-produced noise effects and choice statistics. A stretching/intensity anti-correlation is found with good statistical significance during the average back slopes of bursts. A stretch factor ~2 is found between the 150 dimmest bursts, with peak flux 4.1 ph cm^{-2} s^{-1}. On the other hand, while a trend of increasing stretching factor may exist for rise fronts for burst with decreasing peak flux from >4.1 ph cm^{-2} s^{-1} down to 0.7 ph cm^{-2} s^{-1}, the magnitude of the stretching factor is less than ~ 1.4 and is therefore inconsistent with stretching factor of back slope.Comment: 21 pages, 3 figures. Accepted to Ap

    The BATSE Gamma-Ray Burst Spectral Catalog. I. High Time Resolution Spectroscopy of Bright Bursts using High Energy Resolution Data

    Get PDF
    This is the first in a series of gamma-ray burst spectroscopy catalogs from the Burst And Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory, each covering a different aspect of burst phenomenology. In this paper, we present time-sequences of spectral fit parameters for 156 bursts selected for either their high peak flux or fluence. All bursts have at least eight spectra in excess of 45 sigma above background and span burst durations from 1.66 to 278 s. Individual spectral accumulations are typically 128 ms long at the peak of the brightest events, but can be as short as 16 ms, depending on the type of data selected. We have used mostly high energy resolution data from the Large Area Detectors, covering an energy range of typically 28 - 1800 keV. The spectral model chosen is from a small empirically-determined set of functions, such as the well-known `GRB' function, that best fits the time-averaged burst spectra. Thus, there are generally three spectral shape parameters available for each of the 5500 total spectra: a low-energy power-law index, a characteristic break energy and possibly a high-energy power-law index. We present the distributions of the observed sets of these parameters and comment on their implications. The complete set of data that accompanies this paper is necessarily large, and thus is archived electronically at: http://www.journals.uchicago.edu/ApJ/journal/.Comment: Accepted for publication: ApJS, 125. 38 pages, 9 figures; supplementary electronic archive to be published by ApJ; available from lead author upon reques

    The BATSE experiment on the Compton Gamma Ray Observatory: Status and some early results

    Get PDF
    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO) is a sensitive all-sky detector system. It consists of eight uncollimated detectors at the corners of the spacecraft which have a total energy range of 15 keV to 100 MeV. The primary objective of BATSE is the detection, location, and study of gamma ray bursts and other transient sources. The instrement also has considerable capability for the study of pulsars, solar flares, and other discrete high energy sources. The experiment is now in full operation, detecting about one gamma ray burst per day. A brief description of the on-orbit performance of BATSE is presented, along with examples of early results from some of the gamma ray bursts

    Spectral Properties of Short Gamma-Ray Bursts

    Get PDF
    The distribution of GRB durations is bimodal, but there is little additional evidence to support the division of GRBs into short and long classes. Based on simple hardness ratios, several studies have shown a tendency for longer GRBs to have softer energy spectra. Using a database of standard model fits to BATSE GRBs, we compare the distributions of spectral parameters for short and long bursts. Our preliminary results show that the average spectral break energy differs discontinuously between short and long burst classes, but within each class shows only a weak dependence on burst duration.Comment: 3 pages, 1 postscript figure. To appear in the proceedings of the October 2000 Rome Workshop "Gamma-Ray Bursts in the Afterglow Era

    BATSE flare observations in Solar Cycle 22

    Get PDF
    The Hard X-Ray Burst Spectrometer (HXRBS) group at GSFC has developed and is maintaining a quick-look analysis system for solar flare hard x-ray data from the Burst and Transient Source Experiment (BATSE) on the recently launched Compton Gamma-Ray Observatory (GRO). The instrument consists, in part, of 8 large planar detectors, each 2025 sq cm, placed on the corners of the GRO spacecraft with the orientation of the faces being those of a regular octahedron. Although optimized for the detection of gamma-ray bursts, these detectors are far more sensitive than any previous spacecraft-borne hard x-ray flare instrumentation both for the detection of small microflares and the resolution of fine temporal structures. The data in this BATSE solar data base are from the discriminator large area (DISCLA) rates. From each of eight detectors there are hard x-ray data in four energy channels, 25-50, 50-100, 100-300, and greater than 300 keV with a time resolution of 1.024 seconds. These data are suitable for temporal correlation with data at other wavelengths, and they provide a first look into the BATSE and other GRO instrument flare data sets. The BATSE and other GRO principle investigator groups should be contacted for the availability of data sets at higher time or spectral resolution or at higher energies

    The gamma-ray spectrum of Centaurus A: A high-resolution observation between 70 keV and 8 MeV

    Get PDF
    The NASA/Goddard Space Flight Center Low Energy Gamma ray Spectrometer (LEGS) observed the nearby active nucleus galaxy Centaurus A (NGC 5128) during a balloon flight on 1981 November 19. There is no evidence of a break in the spectrum or of any line features. The 1.6 MeV limit is a factor of 8 lower than the 1974 line flux, indicating that, if the 1974 feature was real, and, if it was narrow, then the line intensity decreased significantly between 1974 and 1981. The lack of observed annihilation radiation from Cen A, combined with the temporal variations that are seen in the X-ray and gamma-ray intensities, constrain the size of the emission region to be between 10 to the 13th power and 5 x 10 to the 17th power cm

    BATSE Gamma-Ray Burst Line Search: V. Probability of Detecting a Line in a Burst

    Full text link
    The physical importance of the apparent discrepancy between the detections by pre-BATSE missions of absorption lines in gamma-ray burst spectra and the absence of a BATSE line detection necessitates a statistical analysis of this discrepancy. This analysis requires a calculation of the probability that a line, if present, will be detected in a given burst. However, the connection between the detectability of a line in a spectrum and in a burst requires a model for the occurrence of a line within a burst. We have developed the necessary weighting for the line detection probability for each spectrum spanning the burst. The resulting calculations require a description of each spectrum in the BATSE database. With these tools we identify the bursts in which lines are most likely to be detected. Also, by assuming a small frequency with which lines occur, we calculate the approximate number of BATSE bursts in which lines of various types could be detected. Lines similar to the Ginga detections can be detected in relatively few BATSE bursts; for example, in only ~20 bursts are lines similar to the GB 880205 pair of lines detectable. Ginga reported lines at ~20 and ~40 keV whereas the low energy cutoff of the BATSE spectra is typically above 20 keV; hence BATSE's sensitivity to lines is less than that of Ginga below 40 keV, and greater above. Therefore the probability that the GB 880205 lines would be detected in a Ginga burst rather than a BATSE burst is ~0.2. Finally, we adopted a more appropriate test of the significance of a line feature.Comment: 20 pages, AASTeX 4.0, 5 figures, Ap.J. in pres
    corecore